# Essential Spreadsheet Formulas 

Matthew B. Courtney, Ed.D.


www.matthewbcourtney.com

## fig

## COURTNEY

Consulting LLC

This work is licensed under the Creative Commons Attribution-NonCommerical-ShareAlive 4.0 International License. To view a copy of the license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode\#languages

You are free to share and adapt this work as long as you give proper attribution, do so for noncommercial purposes, and share derivative content under a similar license.

Suggested Citation: Courtney, M.B. (2021). Essential Spreadsheet Formulas [White paper]. Courtney Consulting, LLC. Retrieved from: www.matthewbcourtney.com/repository

| AVERAGE |  |
| :--- | :--- |
|  | $=$ =AVERAGE (range) |
| range | The collection of cells you wish to analyze. |

## AVERAGEIF

```
                    =AVERAGEIF(range, criteria, average_range)
```

| range | The collection of cells that house the filtering criteria. |
| ---: | :--- |
| criteria | The filtering criteria that defines the cells you want to average. |
| average_range | The collection of cells you wish to analyze. |

## AVERAGEIFS

```
=AVERAGEIFS(average_range, criteria_range1, criteria1, criteria_range2,
                                criteria2, etc...)
```

    average_range The collection of cells you wish to analyze.
    criteria_range1 The collection of cells that house your first filtering criteria.
        criterial The first filtering criteria that defines the cells you want to average.
    criteria_range2 The collection of cells that house your second filtering criteria.
    criteria2 \(\quad\) The second filtering criteria that defines the cells you want to average.
    
## CHOOSE

```
=CHOOSE(index_num, value1, value2, value3 etc...)
```

index_num Which value you wish to display from a list. value1 The first value in your list. value2 The second value in your list.
value3 The third value in your list.

## CORREL

```
=CORREL(array1, array2)
```

array1 The first range of cells.
array2 The second range of cells.

## COUNT

=COUNT (range)
range The collection of cells you wish to analyze.

## COUNTIF

```
=COUNTIF(range, criteria)
```

| range | The collection of cells you wish to analyze. |
| :---: | :--- |
| criteria | The filtering criteria that defines what you want to count. |

## COUNTIFS

| =COUNTIFS (range1, criteria1, range2, criteria2, etc...) |  |
| ---: | :--- |
| range1 | The first collection of cells you wish to analyze. |
| criterial | The filtering criteria that defines what you want to count in range1. |
| range2 | The second collection of cells you wish to analyze. |
| criteria2 | The filtering criteria that defines what you want to count in range2. |

## FORECAST.LINEAR

| $=$ FORECAST. LINEAR ( $x$, known_y's, known_x's) |  |
| ---: | :--- |
| X | The data point that you want to predict. |
| known_y's | The range of values containing the dependent variable. |
| known_ $x^{\prime} s$ | The range of values containing the independent variable. |

## FORECAST.ETS

```
=FORECAST.ETS(target_date, timeline, seasonality, data_completion,
``` aggregation)
\begin{tabular}{|r|l|}
\hline target_date & The data point that you want to predict. \\
\hline values & The historical values that you want to use to predict the next value. \\
\hline timeline & The range of values that denote the timeline - usually dates. \\
\hline seasonality & \begin{tabular}{l} 
An optional value. Set to " 1 " if you want the software to predict seasonality \\
automatically. Set to " 0 " if you want to create a linear prediction.
\end{tabular} \\
\hline data_completion & \begin{tabular}{l} 
An optional value. Set to " 0 " if you want the software to treat missing values as \\
zero. Set to " 1 " if you want the software to treat missing values as missing.
\end{tabular} \\
\hline aggregation & \begin{tabular}{l} 
An optional value. Set to " 0 " if you want the software to average values recorded \\
on the same date.
\end{tabular} \\
\hline
\end{tabular}

\section*{FREQUENCY}
=FREQUENCY(data_array, data_bins)
\begin{tabular}{c|l} 
data_array & The set of values that you want to count frequencies. \\
data_bins & The set of values into which you want to group the values in data_array.
\end{tabular}

\section*{IFERROR}
```

=IFERROR(value, value_if_error)

```
value The argument that is checked for an error.
value_if_error The value you want the software to return if an error exists.
=MAX (range)
range
The collection of cells you wish to analyze.

\section*{MAXIFS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{=MAXIFS (max_range, criteria_range1, criterial, criteria_range2, criteira2, etc...)} \\
\hline max_range & The collection of cells you wish to analyze. \\
\hline criteria_range1 & The collection of cells that houses criterial. \\
\hline criterial & The filtering criteria that defines what you want to apply from criteria_range1. \\
\hline criteria_range2 & The collection of cells that houses criteria2. \\
\hline criteria2 & The filtering criteria that defines what you want to analyze from criteria_range2. \\
\hline
\end{tabular}

\section*{MEDIAN}
\[

\]

MIN
=MIN (range)
range The collection of cells you wish to analyze.

\section*{MINIFS}
=MINIFS (min_range, criteria_range1, criterial, criteria_range2, criteira2, etc...)
\begin{tabular}{|r|l|}
\hline min_range & The collection of cells you wish to analyze. \\
\hline criteria_range1 & The collection of cells that houses criterial. \\
\hline criterial & The filtering criteria that defines what you want to apply from criteria_range1. \\
\hline criteria_range2 & The collection of cells that houses criteria2. \\
\hline criteria2 & \begin{tabular}{l} 
The filtering criteria that defines what you want to analyze from \\
criteria_range 2.
\end{tabular} \\
\hline
\end{tabular}

\section*{MODE}
=MODE (range)
range The collection of cells you wish to analyze.

MODE.MULTI
=MODE.MULTI (range)
range \(\quad\) The collection of cells you wish to analyze.

MODE.SGNL
\[

\]

\section*{NORM.DIST}
\begin{tabular}{|r|l|}
\hline \multicolumn{2}{|c|}{\(=\) NORM. DIST (x, mean, standard_dev, cumulative) } \\
\hline\(x\) & The value that you want to analyze. \\
\hline mean & The mean, or average, of the distribution. \\
\hline standard_dev & The standard deviation of the distribution. \\
\hline cumulative & \begin{tabular}{l} 
Set as "TRUE" if you want to see the cumulative distribution. Set as "FALSE" if you \\
want to see the probability density.
\end{tabular} \\
\hline
\end{tabular}

\section*{PEARSON}
=PEARSON(array1, array2)
array1 The first range of cells.
array2 The second range of cells.

\section*{PERCENTILE.EXC}
\[

\]

\section*{PERCENTILE.INC}
=PERCENTILE.INC(array, k)
\begin{tabular}{r|l} 
array & The collection of cells you wish to analyze. \\
k & The percentile value in the range \(0 . .1\), inclusive.
\end{tabular}

\section*{QUARTILE.EXC}
=QUARTILE.EXC(array, quart)
array The collection of cells you wish to analyze.
quart Indicates which quartile to return.

\section*{QUARTILE.INC}
=QUARTILE.INC(array, quart)
\begin{tabular}{l|l} 
array & The collection of cells you wish to analyze. \\
\hline quart & Indicates which quartile to return.
\end{tabular}

\section*{RANDBETWEEN}
=RANDBETWEEN(value1, value2)
value1 The lower value in your desired range.
value2 The upper value in your desired range.

\section*{SQRT}
```

=SQRT (number)

```
number The number for which you want to calculate the square root.

\section*{STDEV.P}
\[
=S T D E V \cdot P(\text { range })
\]
range The collection of cells you wish to analyze.

\section*{STDEV.S}
```

                                    =STDEV.S(range)
    ```
range
The collection of cells you wish to analyze.

\section*{SUM}
=SUM (range)
range The collection of cells you wish to analyze.

\section*{SUMIF}
```

=SUMIF(range, criteria, sum_range)

```
\begin{tabular}{|r|l|}
\hline range & The collection of cells that houses criteria. \\
\hline Criteria & The filtering criteria that defines what you want to apply from range. \\
\hline sum_range & The collection of cells you wish to analyze. \\
\hline
\end{tabular}

\section*{SUMIFS}
```

    =SUMIFS(sum_range, criteria_range1, criterial, criteria_range2,
                    criteira2, etc...)
    ```
\begin{tabular}{|r|l|}
\hline sum_range & The collection of cells you wish to analyze. \\
\hline criteria_range1 & The collection of cells that houses criterial. \\
\hline criteria1 & The filtering criteria that defines what you want to apply from criteria_range1. \\
\hline criteria_range2 & The collection of cells that houses criteria2. \\
\hline criteria2 & \begin{tabular}{l} 
The filtering criteria that defines what you want to analyze from \\
criteria_range2.
\end{tabular} \\
\hline
\end{tabular}

\section*{T.TEST}
```

=T.TEST(array1, array2, tails, type)

```
array1 The first collection of cells you wish to analyze.
array2 The second collection of cells you wish to analyze.
tails
Set to " 1 " if the t-test uses the one-tailed distribution. Set to " 2 " if the t-test uses the two-tailed distribution.

Set to " 1 " if the t-test if you want to calculate a paired-sample t-test. Set to " 2 " if type you want to calculate a two-sample with equal variance t-test. Set to " 3 " if you want to calculate a two-sample with unequal variance t-test.

\section*{VLOOKUP}
```

=VLOOKUP(lookup_value, table_array, col_index_num, range_lookup)

```
lookup_value The unique identifier you want to search for.
    table_array The table where the matching information is housed.
col_index_num The column on the table_array where the data can be found.
    Set to "TRUE" if the first column in the table is sorted numerically or
    range_lookup
        alphabetically and you want the closest value. Set to "FALSE" if you want to
        match the exact lookup_value.


For more information about how you can use data and research to drive continuous improvement in your school or district, please visit:
www.matthewbcourtney.com```

